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Actuator Landscape

• Power density and 
efficiency are desired 
characteristics for all 
actuators, but no 
micro-actuators have both

• Our goal: Build an efficient 
and powerful micro-
actuator

Macro-actuators
Micro-actuators
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Physical Basis – Electrowetting

• Surfaces can electrically 
change from hydrophobic 
to hydrophilic

Electrowetting of a water drop in oil
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Actuator Structure and Operation

• Actuator consists of a glass electrode array and a 
polyimide droplet array separated by a droplet layer

• Electrodes can distort droplets to produce a net force 
moving the droplet array

Electrode Array
Multi-phase electrodes with an 

electrowetting dielectric

Droplet Array 
Thin (5–10 µm) polyimide 

with water droplets attached

Oil Water Droplet

Polyimide Droplet Array
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Actuator at Rest

• When brought in contact, 

droplet array and electrode 

array snap together and 

self-align

• Contact fixes the location 

in two dimensions

– X position is fixed by rails

– Z positon is fixed by droplet 

height

– Y position is free for translation

Rails
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Actuator in Motion

Fast Linear 
Actuation

Step 
Frequency 

4000 Hz 
20 cyc

250 µm

Slow 
Linear 

Actuation

Step 
Frequency 

5 Hz

50 µm

Precision 1 µm
Accuracy 12 µm
Max Step Frequency 16000 Hz
Max (unloaded) Velocity 192 mm/s

Acceleration 3.07 km/s2

Max Force/Weight Ratio 5500
Max Power Density 1 W/g
Efficiency at Max Power 60%
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Mechanical Characterization
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Efficiency and Power Density

• Power density of the 
48 µm pitch design is 
already comparable to 
electric motors

• Scaling improves power 
density at a quadratic 
rate 

– Projected power density 
at 15 µm pitch is ~10 W/g
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Rotational Actuation

Precision 0.03°
Accuracy 0.17°
Max velocity 2700°/s
Max acceleration 43 M°/s2

Torque 84 mN-mm 200 Hz Step Freq. between Holds 4000 Hz Step Freq. between Holds 

250 µm

In Air
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Rotational Actuation – Macroscopic

4000 Hz 
Step Freq.

100 cyc
between 

Holds 

Moving 
5 mm 
Beam 

Splitter 
(0.37 g)

1000
Mass of 
Actuator
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Applications – Shorter Term

• Building the world’s smallest 
stepper motor (0.1 g) with 
precise positioning for 
cameras or laser 
communication

• Building small precise linear 
actuators with capability to 
move mirrors or lenses

0.2 mm 

5 mm 
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Applications – Longer Term

• Exoskeleton with 
artificial muscle

• Shape-change glass 
and other shape-
change materials

• Artificial wings

Exoskeleton

Artificial Wings

Shape-change glass
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Conclusion

• Microhydraulic actuation is a new MEMS technology developed at 
Lincoln Laboratory under the Advanced Devices Line program

– Allows powerful, efficient, and versatile actuation on a small scale

– Allows very precise and rapid positioning

– Excellent metrics even at an early stage of development

– Many metrics improve with shrinking droplet pitch

• Liquid/solid composition of microhydraulic components offers unique 
challenges and opportunities
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