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Examples of Artificial Intelligence Applications

( ) amazon alexa

2014

* Intelligent assistant capable of voice
interaction

* Speech recognition is performed with
deep neural networks trained on large
data
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102 AlphaGo

2016
Defeated top ranked Go players

AlphaGo’s supervised learning drew
on 160,000 games containing 29.4
million positions. It then played
itself millions of times to get better
and better

2017

Testing autonomous cars without a
driver

Scene understanding is powered by
deep neural networks learning on
2.5 million real-world miles and 1
billion virtual miles in 2016
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What Makes AlphaGo Go?
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Access to Data
* AlphaGo’s supervised learning drew on 160,000
games (played by 6-9 dan players) containing
29.4 million positions
* |t then played itself millions of times to get better
and better
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Computing Power
* Distributed version of AlphaGo used 40 search
threads running on 1202 CPUs and 176 GPUs
— Google Tensor Processing Unit (TPU) used
when playing Lee Sedol

Singla maching
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Algorithm Advances
* Two deep neural networks
Value: 13 layers, Policy: 15 layers

* Monte-Carlo tree search provided the means
to heuristically prune the huge move space

Availability of data and advances in computing hardware and algorithms have led to
machines approaching or exceeding human performance in some domains
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Applying Al to National Security

Capability

Learning Curve

Human-Level Performance

Deep Learning
Breakthroughs

A 4
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Amount of Labeled Data

DoD - Department of Defense IC — Intelligence Community

Commercial Space is Data Rich
* Data is easy to collect
* Labels are free or crowd source

* Rich datasets like ImageNet,
COCO, and others.
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Applying Al to National Security
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Capability

Learning Curve

Human-Level Performance

DoD/IC Problem
Space

Deep Learning
Breakthroughs

Commercial Al
Applications

A 4
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Amount of Labeled Data

DoD — Department of Defense

IC — Intelligence Community

DoD Problem Space is
Data-Starved

 Data has not been labeled

e Data is difficult to collect because
content of interest is rare or
adversary makes it hard

]@ LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



Data Starved Al Challenges

Not Enough Labeled Data

10%

Number of Examples

ARTS
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DIUx Challenge Dataset
Xviewdataset.org

Number of Examples

Not Enough Data

National Security Interest is often

. in the tail of distribution

Objects / Events of Interest
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Applying Al to National Security

Data Rich Data-Starved Data-Starved Example Research Thrusts
* Datais easy to collect * Insufficient labeled data * Datais difficult to collect
* Labels are free or crowd source * Content of interest is rare 1. Develop Gold-standard
ore More datasets
Sophisticated

_ : 2. Efficient data labeling at scale
Physics-Based Al ——o

3. Develop algorithms that
require less training data

v B082 Generative /

=  Strong Commercial Model-Based Al

Leverage “Labeled” Data
Domains*

4. Pursue Cognitive Science
research to inform machine
learning

“Big-data” Domains Simulation Capability \.

5. Hybrid learning that merges
deep learning with model-
based learning

e

Recent Commercial g . S )
/ Strong National Security Pull “Low-resource”

Academic Progress

Domains**

Less Simpler

More sophisticated algorithms are needed in a data-starved environment
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Data-Starved Al Session Talks

Computer Vision

Object Detection

Subset Prioritized by Uncertainty

Model Trained with
Labeled Data

Analyst Labels
Subset

Al for Imagery Analysis in Low
Resource Domains
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Features

Miss Probability (%)

TF-IDF

Cyber Warrior

CHARIOT
Detecting Online Cyber Discussions

Logic Regression
Classifier

80% Cyber

1% Cyber
100 ==
([0 ] - : — Stack Exchange
L --- Twitter

801 T... -~ Reddit (> 320 words)

70 b % Performance Target
L.
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0.01

0.1 1.0 10
False Alarm Probability (%)

Al to Aid Rapid Response to
Cyber Attacks

Inferencing

Observed

Start % Inferred goal
location 2] locations

locations

Gold standard Target inference algorithm

inference algorithm (the algorithm being measured)

Number of gold-standard ;. \ ,/  Number of target
i

inference runs "~ inference runs

Auxiliary Inferense

Number of meta-inference Divergence Estimator " Number of meta-inference
runs for gold-standard ¢ J " runs for target

Symmetrized KL divergence estimate [
D = Dy (gold-standard| target) + Dy (target||gold-standard)

Probabilistic Computing for
Data-Starved Al
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Data-Starved Al Session Posters

Computer Vision in Low Resource Environments Teaming with the Al Cyber Warrior

Hovz rlnanly ‘jrse Growth of Threat CHARIOT: Leverage HLT to Improve SNR for Cyber Analysis
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Mr. David Mascharka, MIT Lincoln Laboratory Dr. William Streilein, MIT Lincoln Laboratory

Interpretable Machine Learning Threat Network Detection:
Countering Weaponization of Social Media

Two Main Approaches To Explanation, “A Neural Network that Explains its Predictions”

Interpretation, and Visualization |O Discover
Training Set Pixel Space Latent Space o | Class Space A
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Dr. Jonathan Su, MIT Lincoln Laboratory Dr. Olga Simek, MIT Lincoln Laboratory
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Keynote: Prof. Antonio Torralba

Professor

Dept. of Electrical Engineering
and Computer Science
Massachusetts Institute of
Technology
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Research Interests

* Building systems that can perceive the world
like humans do. A system able to perceive
the world through multiple senses might be
able to learn without requiring massive
curated datasets.

MIT-IBM Watson Lab

* The Lab is focused on advancing four
research pillars: Al Algorithms, the
Physics of Al, the Application of Al to
industries, and Advancing shared
prosperity through Al
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Summary

* Recent advances in hardware, algorithms, and the availability of large training
data have led to machines approaching or exceeding human performance in
some domains

* Challenge in applying Al for National Security: How do we gain understanding
of the world to enable time-critical decisions in an environment that is
adversarial and data starved.

 Advances in data-starved Al are needed to meet national needs

— MIT Lincoln Laboratory is actively working in this area

— Looking forward to collaborating with you to improved the state of the art
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